首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolome profiling of plasma reveals different metabolic responses to acute cold challenge between Inner-Mongolia Sanhe and Holstein cattle
Affiliation:1. Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China;2. College of Life Sciences and Bioengineering, Beijing Jiaotong University, Haidian District, Beijing, 100044, China;3. Department of Animal Sciences, Purdue University, West Lafayette, IN 47907;4. Xiertala Cattle Breeding Farm, Hailaer Farm Buro, Hailaer, Inner Mongolia, 021012, China
Abstract:Low-temperature conditions influence cattle productivity and survivability. Understanding the metabolic regulations of specific cattle breeds and identifying potential biomarkers related to cold challenges are important for cattle management and optimization of genetic improvement programs. In this study, 28 Inner-Mongolia Sanhe and 22 Holstein heifers were exposed to ?25°C for 1 h to evaluate the differences in metabolic mechanisms of thermoregulation. In response to this acute cold challenge, altered rectal temperature was only observed in Holstein cattle. Further metabolome analyses showed a greater baseline of glycolytic activity and mobilization of AA in Sanhe cattle during normal conditions. Both breeds responded to the acute cold challenge by altering their metabolism of volatile fatty acids and AA for gluconeogenesis, which resulted in increased glucose levels. Furthermore, Sanhe cattle mobilized the citric acid cycle activity, and creatine and creatine phosphate metabolism to supply energy, whereas Holstein cattle used greater AA metabolism for this purpose. Altogether, we found that propionate and methanol are potential biomarkers of acute cold challenge response in cattle. Our findings provide novel insights into the biological mechanisms of acute cold response and climatic resilience, and will be used as the basis when developing breeding tools for genetically selecting for improved cold adaptation in cattle.
Keywords:acute cold challenge  metabolic profile  Inner-Mongolia Sanhe  Holstein
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号