首页 | 本学科首页   官方微博 | 高级检索  
     

多核处理器的功耗估算模型
引用本文:刘辛,沈立,苏博,王志英. 多核处理器的功耗估算模型[J]. 软件学报, 2015, 26(7): 1840-1852
作者姓名:刘辛  沈立  苏博  王志英
作者单位:高性能计算国家重点实验室(国防科学技术大学 计算机学院), 湖南 长沙 410073,高性能计算国家重点实验室(国防科学技术大学 计算机学院), 湖南 长沙 410073,高性能计算国家重点实验室(国防科学技术大学 计算机学院), 湖南 长沙 410073,高性能计算国家重点实验室(国防科学技术大学 计算机学院), 湖南 长沙 410073
基金项目:国家高技术研究发展计划(863)(2012AA010905); 国家自然科学基金(61472431, 61272143)
摘    要:精确的功耗估算能够为操作系统调度、软/硬件能效优化提供有效的指导.以往的研究表明:通过监测处理器内部相关硬件事件(如提交的指令数、Cache访问次数等),可以对功耗进行估算.但是,已有的相关功耗模型的精度并不理想,误差通常在5%以上.通过分析处理器提供的硬件事件,并在众多事件中筛选出一组与程序运行功耗密切相关的事件,使用逐步多元线性回归分析,建立了一个与应用无关的实时功耗估算模型,该模型可以直接移植到支持SMT的平台上.通过PARSEC和SPLASH2两个基准测试程序集进行了验证,估算误差分别为3.01%和1.99%.针对建模耗时长的问题,提出了基于两阶聚类的优化改进方法.所提出的估算模型能为构建具有动态平衡功耗和平滑峰值功耗的智能功耗感知系统提供借鉴.

关 键 词:功耗估算  性能计数器  多核
收稿时间:2014-05-07
修稿时间:2014-07-29

Power Estimation Model on Multi-Core Platforms
LIU Xin,SHEN Li,SU Bo and WANG Zhi-Ying. Power Estimation Model on Multi-Core Platforms[J]. Journal of Software, 2015, 26(7): 1840-1852
Authors:LIU Xin  SHEN Li  SU Bo  WANG Zhi-Ying
Affiliation:State Key Laboratory of High Performance Computing (College of Computer, National University of Defense Technology), Changsha 410073, China,State Key Laboratory of High Performance Computing (College of Computer, National University of Defense Technology), Changsha 410073, China,State Key Laboratory of High Performance Computing (College of Computer, National University of Defense Technology), Changsha 410073, China and State Key Laboratory of High Performance Computing (College of Computer, National University of Defense Technology), Changsha 410073, China
Abstract:Accurate power consumption estimation can provide a significant guidance for OS scheduling and software/hardware power efficiency optimization. Previous researches have indicated that power consumption can be estimated by monitoring the related hardware events inside the CPU, such as instruction submission times and caches access times. However, those models which are based on hardware are not able to provide accurate results; they often come with an error over 5%. This study first analyzes the hardware events provided by the CPU, then chooses a set of events that are closely related to power consumption, and finally uses step by step multi-element linear regression analysis to build our run-time estimation model. This model is not related to any applications and can be directly transformed into the platforms that support SMT. The model is verified with the two benchmark suites PARSEC and SPLASH2, resulting in estimated errors of 3.01% and 1.99% respectively. To address the issue of high time consuming in modeling, an optimization scheme with two-step cluster is also presented in this article. The proposed estimation model can serve as a foundation for the intelligent power consumption perception systems that dynamically balance power assignment and smooth peak power consumption at run-time.
Keywords:power estimation  performance counter  multi-core
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号