首页 | 本学科首页   官方微博 | 高级检索  
     

基于多层前向神经网络入侵检测系统的研究
引用本文:马海峰,孙名松. 基于多层前向神经网络入侵检测系统的研究[J]. 哈尔滨理工大学学报, 2004, 9(2): 52-55
作者姓名:马海峰  孙名松
作者单位:哈尔滨理工大学,计算机与控制学院,黑龙江,哈尔滨,150080;哈尔滨理工大学,计算机与控制学院,黑龙江,哈尔滨,150080
摘    要:针对目前入侵检测系统不能有效检测未知入侵行为的问题,根据神经网络的自学习和自适应性强的特点,采取了将多层前向神经网络与入侵检测系统相结合的方法,提出了一种入侵检测模型,给出了此模型中神经网络模块的改进训练算法,实验证明,此算法入侵检测率可达86%,最大误报率为3%,加大训练样本可进一步提高检测率,从而更有效地检测出未知的入侵行为;此算法实时性强,可有效提高神经网络的学习效率。

关 键 词:IDS  神经网络  MLP  BP算法
文章编号:1007-2683(2004)02-0052-04
修稿时间:2003-10-27

Study of Intrusion Detection System Based on Multiplayer Forward Neural Network
MA Hai-feng,SUN Ming-song. Study of Intrusion Detection System Based on Multiplayer Forward Neural Network[J]. Journal of Harbin University of Science and Technology, 2004, 9(2): 52-55
Authors:MA Hai-feng  SUN Ming-song
Abstract:Aimed at the problem that intrusion detection system couldn't detect undefined intrusion behavior effectively, according to the self-learning and self-adaptability of the neural network, this paper integrated the neural network with intrusion detection system, proposed a network intrusion detection model and gave an improved algorithm for neural network model. The experiments proved that intrusion detection rate is 86 percent, and maximal error is 3 percent, which can advance detection rate by more training samples, therefore, can detect undefined intrusion behavior effectively. The algorithm is strongly real-time and can improve the study efficiency effectively.
Keywords:intrusion detection system  neural network  MLP  BP algorithms
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号