首页 | 本学科首页   官方微博 | 高级检索  
     


On the strengthening effect of increasing cycling frequency on fatigue behavior of some polymers and their composites: Experiments and modeling
Affiliation:1. Institute of Fundamentals of Machinery Design, Silesian University of Technology, Konarskiego 18A, Gliwice 44-100, Poland
Abstract:Effect of cycling frequency on fatigue behavior of neat, talc filled, and short glass fiber reinforced injection molded polymer composites was investigated by conducting load-controlled fatigue tests at several stress ratios (R = −1, 0.1, and 0.3) and at several temperatures (T = 23, 85 and 120 °C). A beneficial or strengthening effect of increasing frequency was observed for some of the studied materials, before self-heating became dominant at higher frequencies. A reduction in loss tangent (viscoelastic damping factor), width of hysteresis loop, and displacement amplitude, measured in load-controlled fatigue tests, was observed by increasing frequency for frequency sensitive materials. Reduction in loss tangent was also observed for frequency sensitive materials in DMA tests. It was concluded that the fatigue behavior is also time-dependent for frequency sensitive materials. A Larson–Miller type parameter was used to correlate experimental fatigue data and relate stress amplitude, frequency, cycles to failure, and temperature together. An analytical fatigue life estimation model was also used to consider the strengthening effect of frequency in addition to mean stress, fiber orientation, and temperature effects on fatigue life.
Keywords:Fatigue  Frequency effect  Polymer  Viscoelasticity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号