首页 | 本学科首页   官方微博 | 高级检索  
     


Fuzzy classification of young women's lower body based on anthropometric measurement
Affiliation:1. Department of Clothing Technology, Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia;2. Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia;3. Faculty of Mechanical Engineering, Institute for Textile and Garment Manufacture Processes, University of Maribor, Maribor, Slovenia
Abstract:The traditional method of body classification is discrete, using crisp and rather dichotomous classification methods; there are many shortcomings for ergonomic design of clothing products by this method. This paper proposes a fuzzy method to classify lower body shapes based on triangular fuzzy numbers. By using factor analysis and correlation analysis, we found that the height, the waist girth, and the difference of hip-waist are crucial dimensions to represent lower body shape. We then classified the lower body shape into three categories according to the difference of hip-to-waist, and finally used the membership of triangular fuzzy numbers to represent the lower body shapes. Results show that the fuzzy method of body classification can more accurately represents body information than the traditional method without increasing the number of body types. Additionally, we established that the mean of the height, waist girth and hip girth of the young women of northeast China increased by about 0.8 cm, 1.5 cm and 1.4 cm respectively compared with ten years ago.Relevance to industry: Anthropometric data is the basis of garment pattern design, and body classification is a necessary precondition for developing a garment size system. These research achievements will add value to the pattern design of young women's lower body clothing, the development of new sizing systems and related industries.
Keywords:Fuzzy body classification  Anthropometric measurement  Triangular fuzzy number  Lower body shape  Young woman
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号