首页 | 本学科首页   官方微博 | 高级检索  
     


Compound joints: Behavior and benefits of flexure arrays
Affiliation:1. School of Engineering, University College Cork, Cork, Ireland;2. Tyndall National Institute, University College Cork, Cork, Ireland;3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
Abstract:Because compliant mechanisms achieve their motion through deflection of flexible members, they have a limited range of motion and finite stiffness. Many common flexure geometries also suffer from a non-stationary center of rotation. These properties can be obstacles to their adoption in applications that require large displacements, low stiffness, or stationary centers of rotation. This work presents the concept of compound flexures: by assembling arrays of flexures, we can increase range of motion, decrease stiffness, and reduce center shift. We first develop the theory behind some of the basic behavior of compound joints. Then finite element analysis is used to explore other aspects of compound joint behavior such as off-axis stiffness and quantifying the center shift for two flexure types when used in compound joints of various configurations. It is shown in an example that range of motion can be doubled with no appreciable loss in off-axis stiffness, while the desired stiffness κθz remains unchanged. A method is presented to achieve zero center shift for a specified rotational displacement. Compound joints are shown to exhibit greater ranges of motion, higher off-axis stiffness, and reduced center shift compared to traditional joints.
Keywords:Compliant mechanism  Compound joint  Center shift  Cross-axis flexural pivot  Cartwheel flexure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号