首页 | 本学科首页   官方微博 | 高级检索  
     

基于相对熵的概率假设密度滤波器序贯蒙特卡罗实现方式
引用本文:李威 韩崇昭 闫小喜. 基于相对熵的概率假设密度滤波器序贯蒙特卡罗实现方式[J]. 控制与决策, 2014, 29(6): 997-1002
作者姓名:李威 韩崇昭 闫小喜
作者单位:西安交通大学智能网络与网络安全教育部重点实验室;西安交通大学电信学院;江苏大学电气信息工程学院
基金项目:国家自然科学基金创新研究群体项目(61221063);国家自然科学基金面上项目(61074176);江苏大学高级人才科研启动基金项目(12JDG076)
摘    要:概率假设密度滤波器的典型序贯蒙特卡罗实现方式与粒子滤波类似,均是利用大量加权粒子估计多目标状态,典型实现方式是为每个期望目标分配固定数目的粒子,这导致较大的算法时间开销.鉴于此,建立了基于相对熵的序贯蒙特卡罗实现方式.首先计算两个不同规模粒子集合的相对熵,与预设阈值进行比较以确定粒子数目,从而动态调整粒子数目.仿真结果表明,所提出的实现方式提高了跟踪效率,在大部分时间步上优于典型实现方式.

关 键 词:多目标跟踪  概率假设密度  序贯蒙特卡罗  相对熵
收稿时间:2013-04-26
修稿时间:2013-07-16

Sequential Monte Carlo implementation of PHD filter based on Kullback-Leibler divergence
LI Wei HAN Chong-zhao YAN Xiao-xi. Sequential Monte Carlo implementation of PHD filter based on Kullback-Leibler divergence[J]. Control and Decision, 2014, 29(6): 997-1002
Authors:LI Wei HAN Chong-zhao YAN Xiao-xi
Affiliation:LI Wei;HAN Chong-zhao;YAN Xiao-xi;Ministry of Education Key Lab For Intelligent Networks and Network Secuurity,Xi’an Jiaotong University;School of Electronics and Information Engineering,Xi’an Jiaotong University;School of Electrical and Information Engineering,Jiangsu University;
Abstract:

The typical sequential Monte Carlo(SMC) implementation of probability hypothesis density(PHD) filter is similar with the particle filter. Both of them make use of a large number of particles to estimate the multiple target states. The fixed number of particles is assigned for each expected target in typical SMC implementation, which will result in larger time cost of the algorithm. Therefore, the SMC implementation based on Kullerback-Leibler divergence(KLD) is proposed. The KLD is computed for the two particle sets in different sizes. Then, the KLD is compared with the pre-threshold to obtain the number. The number of particles can be adaptively adjusted in the proposed implementation. Simulation results show that, the proposed implementation can improve the tracking efficiency, which is superior to the typical implementation in most time steps.

Keywords:

multi-target tracking|probability hypothesis density filter|sequential Monte Carlo implementation|Kullback-Leibler divergence

本文献已被 CNKI 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号