Automatic color constancy algorithm selection and combination |
| |
Authors: | S. Bianco [Author Vitae] [Author Vitae] C. Cusano [Author Vitae] R. Schettini [Author Vitae] |
| |
Affiliation: | DISCo (Dipartimento di Informatica, Sistemistica e Comunicazione), Università degli Studi di Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy |
| |
Abstract: | In this work, we investigate how illuminant estimation techniques can be improved taking into account intrinsic, low level properties of the images. We show how these properties can be used to drive, given a set of illuminant estimation algorithms, the selection of the best algorithm for a given image. The algorithm selection is made by a decision forest composed of several trees on the basis of the values of a set of heterogeneous features. The features represent the image content in terms of low-level visual properties. The trees are trained to select the algorithm that minimizes the expected error in illuminant estimation. We also designed a combination strategy that estimates the illuminant as a weighted sum of the different algorithms’ estimations. Experimental results on the widely used Ciurea and Funt dataset demonstrate the effectiveness of our approach. |
| |
Keywords: | Color constancy Image indexing Classification Decision forests |
本文献已被 ScienceDirect 等数据库收录! |
|