Restoration of images corrupted by Gaussian and uniform impulsive noise |
| |
Authors: | Ezequiel Ló pez-Rubio [Author Vitae] |
| |
Affiliation: | Department of Computer Languages and Computer Science, University of Málaga, Bulevar Louis Pasteur, 35. 29071 Málaga, Spain |
| |
Abstract: | Many approaches to image restoration are aimed at removing either Gaussian or uniform impulsive noise. This is because both types of degradation processes are distinct in nature, and hence they are easier to manage when considered separately. Nevertheless, it is possible to find them operating on the same image, which produces a hard damage. This happens when an image, already contaminated by Gaussian noise in the image acquisition procedure, undergoes impulsive corruption during its digital transmission. Here we propose a principled method to remove both types of noise. It is based on a Bayesian classification of the input pixels, which is combined with the kernel regression framework. |
| |
Keywords: | Image restoration Gaussian noise Uniform impulsive noise Kernel regression Probabilistic mixture models |
本文献已被 ScienceDirect 等数据库收录! |
|