首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of deformation in magnetic fluid based transversely rough short bearing
Abstract:Abstract

This investigation aims to analyse the performance of a magnetic fluid based rough short bearing incorporating a deformation effect. The associated stochastically averaged Reynolds equation is solved with suitable boundary conditions to obtain the expression for pressure distribution, which results in the calculation of the load carrying capacity. The expression for the friction is obtained for both plates. It is seen that the load carrying capacity increases nominally as a result of the magnetic fluid lubricant. Furthermore, the film thickness ratio increases the load carrying capacity. It is found that the load carrying capacity increases as the ratio of the length/outlet film thickness increases, while this trend is reversed in the case of magnetisation. Moreover, it is noticed that friction remains unaltered because of the magnetic fluid lubricant. Furthermore, it is interesting to note that the deformation also unalters the friction. This article suggests that the negative effect of the standard deviation can be neutralised up to a certain extent by the combined positive effect of the magnetisation parameter, the film thickness ratio and the ratio of the length/outlet film thickness, especially when the deformation is relatively less. Therefore, this study offers some scopes for extending the bearing’s life. Finally, the bearing can support a load even in the absence of flow, unlike in the case of conventional lubricant.
Keywords:Short bearing  Magnetic fluid  Reynolds equation  Roughness  Deformation  Load carrying capacity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号