首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量回归机的三维人脸建模方法研究
引用本文:霍牛义,周少武,张国云,郑腾交. 基于支持向量回归机的三维人脸建模方法研究[J]. 计算技术与自动化, 2012, 31(4): 90-94
作者姓名:霍牛义  周少武  张国云  郑腾交
作者单位:1. 湖南科技大学信息与电气工程学院,湖南湘潭411100;湖南理工学院信息与通信工程学院,湖南岳阳414006
2. 湖南科技大学信息与电气工程学院,湖南湘潭,411100
基金项目:湖南省教育厅重点项目,湖南省科技计划项目
摘    要:提出一种新的三维人脸建模方法,该方法首先运用双目立体视觉原理从不同角度获得人脸的两张照片,在一张照片上选定特征点,通过匹配在另一张照片上得到对应的特征点,然后从空间立体几何知识出发,根据两张照片上特征点的坐标以及拍摄时的参数,计算其三维坐标,利用支持向量回归机(SVR)对其进行回归预测建模,最后经纹理贴图,得到具有纹理特征的特定三维人脸模型。仿真实验结果表明,该方法获得的三维人脸模型较为逼真。

关 键 词:三维人脸建模  立体视觉  支持向量回归机  匹配

3D Face Modeling Method Based on SVR
HUO Niu-yi,ZHOU Shao-wu,ZHANG Guo-yun,ZHENG Teng-jiao. 3D Face Modeling Method Based on SVR[J]. Computing Technology and Automation, 2012, 31(4): 90-94
Authors:HUO Niu-yi  ZHOU Shao-wu  ZHANG Guo-yun  ZHENG Teng-jiao
Affiliation:1(1.College of Information &Electrical Engineering,Hunan University of Science and Technology,Xiangtan 411100,China; 2.College of Information & Communication Engineering,Hunan Institute of Science and Technology,Yueyang 414006,China)
Abstract:This paper presents a new 3D face modeling method. First, it needs to shoot two face photos of different angles applies the principle of binocular stereovision. Then we select some feature points in one photo and obtain the corresponding feature points in another by matching. And we calculate the 3D coordinates according to the coordinates of the feature points in the two photos as well as the shooting parameters using the three-dimensional apace geometry knowledge. Followed, we modeling the 3D face with the method of fitting using Support Vector Regression Machine (SVR).At the end, the specific 3D face model with texture features is generated after the texture mapping. Simulation results show that the three-dimensional face model obtained by this method is more realistic.
Keywords:3D face modeling   binocular stereovision   SVR   matching
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算技术与自动化》浏览原始摘要信息
点击此处可从《计算技术与自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号