首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的建筑能耗混合预测模型
引用本文:于军琪,杨思远,赵安军,高之坤. 基于神经网络的建筑能耗混合预测模型[J]. 浙江大学学报(工学版), 2022, 56(6): 1220-1231. DOI: 10.3785/j.issn.1008-973X.2022.06.021
作者姓名:于军琪  杨思远  赵安军  高之坤
作者单位:1. 西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 7100552. 西安建筑科技大学 信息与控制工程学院,陕西 西安 710055
基金项目:咸阳机场三期扩建工程绿色能源站系统智能管控咨询与顾问项目(20210103);国家重点研发计划项目(2017YFC0704100)
摘    要:为了提升建筑能耗预测的精度、鲁棒性和泛化能力,提出树种算法(TSA)优化的径向基函数(RBF)神经网络与长短时记忆(LSTM)神经网络结合的混合预测模型. 采用基于自适应噪声的完全集成经验模态分解算法,将建筑能耗数据分解为1组本征模态函数(IMF)分量和1个残余分量,利用样本熵算法将各分量划分为高频分量和低频分量. 采用最小绝对收缩与选择算子(LASSO)方法进行特征选择. 分别利用TSA算法优化后的RBF模型与LSTM模型对低频分量和高频分量进行预测,并叠加重构得到最终预测结果. 模型评估结果表明,混合预测模型的精度为98. 72%. 相比于RBF、TSA-RBF、LSTM模型,所提模型的预测效果更好,且具有较强的鲁棒性和泛化能力,能够更为有效地用于建筑逐时电力能耗预测.

关 键 词:建筑能耗预测  神经网络  混合预测模型  集成经验模态分解  特征选择  

Hybrid prediction model of building energy consumption based on neural network
Jun-qi YU,Si-yuan YANG,An-jun ZHAO,Zhi-kun GAO. Hybrid prediction model of building energy consumption based on neural network[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(6): 1220-1231. DOI: 10.3785/j.issn.1008-973X.2022.06.021
Authors:Jun-qi YU  Si-yuan YANG  An-jun ZHAO  Zhi-kun GAO
Abstract:A hybrid prediction model which combining radial basis function (RBF) neural network optimized by tree-seed algorithm (TSA) and long short-term memory (LSTM) neural network was proposed, in order to improve the accuracy, robustness, and generalization ability of building energy consumption prediction. Firstly, the complete ensemble empirical mode decomposition with adaptive noise algorithm was used to decompose the building energy consumption data into a group of intrinsic mode function (IMF) components and a residual component, and the components were divided into high-frequency components and low-frequency components by sample entropy algorithm. Then, least absolute contraction and selection operator (LASSO) method was used for feature selection. Finally, the RBF model optimized by the TSA algorithm and the LSTM model were used to predict the low-frequency components and high-frequency components respectively, and the final prediction results were obtained by superposition and reconstruction. Model evaluation results showed that the accuracy of the hybrid prediction model was 98.72%. Compared with RBF, TSA-RBF, and LSTM models, the prediction effect of the hybrid model is better. Meanwhile, the model has strong robustness and generalization ability, and can be more effectively used for hourly building electricity consumption prediction.
Keywords:building energy consumption prediction  neural network  hybrid prediction model  ensemble empirical mode decomposition  feature selection  
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号