首页 | 本学科首页   官方微博 | 高级检索  
     

基于VMD-WPE和SSA-ELM的短期风电功率预测研究
引用本文:刘栋,魏霞,王维庆,叶家豪. 基于VMD-WPE和SSA-ELM的短期风电功率预测研究[J]. 太阳能学报, 2022, 43(12): 360-367. DOI: 10.19912/j.0254-0096.tynxb.2021-0629
作者姓名:刘栋  魏霞  王维庆  叶家豪
作者单位:新疆大学电气工程学院,乌鲁木齐 830047
基金项目:国家自然科学基金(52067020)
摘    要:针对风电功率序列非线性、非平稳性特点,提出一种变分模态分解(VMD)-加权排列熵(WPE)和麻雀算法(SSA)优化极限学习机(ELM)的混合风电功率预测模型。首先,采用VMD技术将原始序列分解为多个固有模态分量,再采用WPE技术将各分量重组成若干个复杂度差异较大的子序列。然后,利用启发式SSA算法对ELM的参数进行优化,建立风电功率预测优化模型。最后,采用西北某风电场实际数据对所提模型进行验证。结果表明,与其他模型相比,所提模型提高了预测性能。

关 键 词:风电功率预测  变分模态分解  加权排列熵  麻雀算法  极限学习机  
收稿时间:2021-06-07

SHORT TERM WIND POWER FORECASTING BASED ON VMD-WPE AND SSA-ELM
Liu Dong,Wei Xia,Wang Weiqing,Ye Jiahao. SHORT TERM WIND POWER FORECASTING BASED ON VMD-WPE AND SSA-ELM[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 360-367. DOI: 10.19912/j.0254-0096.tynxb.2021-0629
Authors:Liu Dong  Wei Xia  Wang Weiqing  Ye Jiahao
Affiliation:School of Electrical Engineering, Xinjiang University, Urumqi 830047, China
Abstract:Aiming at the nonlinear and non-stationary characteristics of wind power series, a hybrid wind power prediction model based on variational mode decomposition (VMD), weighted permutation entropy (WPE) and sparrow algorithm (SSA)-optimized extreme learning machine (ELM) is proposed. Firstly, the original sequence is decomposed into multiple intrinsic mode components by VMD technology, and then each component is reconstructed into several subsequences with different complexity by WPE technology. Then, a new heuristic SSA algorithm is used to optimize the parameters of ELM, and the wind power prediction optimization model is established. Finally, the actual data of a wind farm in Northwest China is used to verify the proposed model. The results show that the prediction performance of the model is improved compared with other models.
Keywords:wind power forecasting  variational mode decomposition  weighted permutation entropy  sparrow search algorithm  extreme learning machine  
点击此处可从《太阳能学报》浏览原始摘要信息
点击此处可从《太阳能学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号