首页 | 本学科首页   官方微博 | 高级检索  
     

数据驱动的潮流能水轮机叶片翼型性能保真替代计算模型对比研究
引用本文:胡振辉,袁鹏,司先才,刘永辉,王树杰,周迎. 数据驱动的潮流能水轮机叶片翼型性能保真替代计算模型对比研究[J]. 太阳能学报, 2022, 43(12): 495-502. DOI: 10.19912/j.0254-0096.tynxb.2021-0596
作者姓名:胡振辉  袁鹏  司先才  刘永辉  王树杰  周迎
作者单位:1.中国海洋大学工程学院,青岛 266100; 2.青岛市海洋可再生能源重点实验室,青岛 266100
基金项目:国家重点研发计划(2018YFB1501903); 山东省重点研发计划(2019GGX103012)
摘    要:在对翼型Bezier-PARSEC参数化软件FanOpt的应用方式改进后建立数据集,以翼型升阻比特性为目标,分别利用支持向量回归(SVR)、决策树、随机森林回归、全连接神经网络、一维卷积神经网络等机器学习模型进行拟合,训练模型比较拟合精度。结果表明,全连接神经网络、一维卷积神经网络作为替代计算模型在测试集上对升阻比的预测准确率可达97.86%,但相比于一维卷积神经网络,全连接神经网络在处理这种结构不复杂的数据集时更有优势。

关 键 词:潮流能  叶片  机器学习  水轮机翼型  参数化  神经网络  
收稿时间:2021-05-31

COMPARATIVE STUDY OF SURROGATE CALCULATION MODELS FOR PERFORMANCE OF BLADE HYDROFOIL OF TIDAL TURBINE BASED ON DATA-DRIVEN
Hu Zhenhui,Yuan Peng,Si Xiancai,Liu Yonghui,Wang Shujie,Zhou Ying. COMPARATIVE STUDY OF SURROGATE CALCULATION MODELS FOR PERFORMANCE OF BLADE HYDROFOIL OF TIDAL TURBINE BASED ON DATA-DRIVEN[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 495-502. DOI: 10.19912/j.0254-0096.tynxb.2021-0596
Authors:Hu Zhenhui  Yuan Peng  Si Xiancai  Liu Yonghui  Wang Shujie  Zhou Ying
Affiliation:1. College of Engineering, Ocean University of China, Qingdao 266100, China; 2. Ocean Engineering Key Laboratory of Qingdao, Qingdao 266100, China
Abstract:After the improvement of the application mode of airfoil Bezier-PARSEC parameterization software FanOpt, the data set is established. Taking the Lift-to-Drag Ratio characteristics of airfoil as the target, the machine learning models such as support vector regression (SVR), decision tree, random forest regression, fully connected neural network and one-dimensional convolution neural network are used to fit the data, and the fitting accuracy of the training models is compared. The results show that the prediction accuracy of lift to drag ratio can reach 97.86% by using fully connected neural network and one-dimensional convolutional neural network as surrogate calculation models in the test set. However, compared with one-dimensional convolutional neural network, fully connected neural network has more advantages in dealing with this kind of data set with uncomplicated structure.
Keywords:tidal energy  blades  machine learning  hydrofoils  parameterization  neural networks  
点击此处可从《太阳能学报》浏览原始摘要信息
点击此处可从《太阳能学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号