遥感图像语义分割空间全局上下文信息网络 |
| |
作者姓名: | 吴泽康 赵姗 李宏伟 姜懿芮 |
| |
作者单位: | 1. 郑州大学 信息工程学院,河南 郑州 4500012. 郑州大学 地球科学与技术学院,河南 郑州 450001 |
| |
基金项目: | 国家自然科学基金面上项目(41571394) |
| |
摘 要: | 为了解决卷积神经网络(CNN)在语义分割特征提取阶段容易丢失空间信息以及边界信息不明确的问题,基于U-Net基线网络提出空间全局上下文信息网络(NC-Net). 增加再编码阶段(ReEncoder),以增强空间信息识别能力. 在Decoder阶段输出多尺度特征,与ReEncoder阶段结合获取全局上下文信息. 保留边界损失函数,设计多尺度损失函数级联方法,优化整体网络. 在GID以及WHDLD数据集上的实验结果表明,该方法的总体准确度达到最好成绩,明显优于其他基线模型.
|
关 键 词: | 语义分割 遥感影像 空间信息 全局上下文 神经网络 |
|
| 点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息 |
|
点击此处可从《浙江大学学报(工学版)》下载全文 |
|