首页 | 本学科首页   官方微博 | 高级检索  
     

基于风险预测的自动驾驶车辆行为决策模型
引用本文:孙启鹏,武智刚,曹宁博,马飞,杜婷竺. 基于风险预测的自动驾驶车辆行为决策模型[J]. 浙江大学学报(工学版), 2022, 56(9): 1761-1771. DOI: 10.3785/j.issn.1008-973X.2022.09.009
作者姓名:孙启鹏  武智刚  曹宁博  马飞  杜婷竺
作者单位:1. 长安大学 经济与管理学院,陕西 西安 7100642. 长安大学 运输工程学院,陕西 西安 710064
基金项目:中国高校产学研创新基金资助项目(2019ITA01019);陕西省教育厅重点科学研究计划项目(21JZ005,20JZ015);中央高校基本科研业务费专项资金资助项目(300102230611,300102238655)
摘    要:为了解决人工与自动驾驶汽车混行环境下无信号交叉口的通行权分配问题,提出基于驾驶员行为预测的自动驾驶汽车行为决策模型.利用模糊逻辑方法构建驾驶员的风险感知模型.基于风险均衡理论,结合可接受风险区间,预测人工驾驶汽车的行为选择策略.构建自动驾驶汽车的综合效用函数,利用博弈论求解最优行为策略组合,实现无信号交叉口车辆协同控制.仿真结果表明,面对异质驾驶员,自动驾驶汽车能够有效避免碰撞事故发生并提高自动驾驶汽车通过无信号交叉口的效率,保证驾驶员风险感知值处于可接受范围.在15组实验中,有93.3%的实验组能够保证车辆通过冲突点的时间差大于可接受的安全通行间隔时间,不同情景下自动驾驶汽车的通行时间是自由流状态的1.07~2.43倍.与无预测自私博弈模型的对比实验表明,所提模型能够显著提升自动驾驶汽车的通行效率.

关 键 词:无信号交叉口  混合交通环境  行为预测与决策  模糊逻辑  协同控制

Decision-making model of autonomous vehicle behavior based on risk prediction
Qi-peng SUN,Zhi-gang WU,Ning-bo CAO,Fei MA,Ting-zhu DU. Decision-making model of autonomous vehicle behavior based on risk prediction[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(9): 1761-1771. DOI: 10.3785/j.issn.1008-973X.2022.09.009
Authors:Qi-peng SUN  Zhi-gang WU  Ning-bo CAO  Fei MA  Ting-zhu DU
Abstract:A behavioral decision-making model for autonomous vehicles based on driver behavior prediction was proposed, in order to solve the problem of right-of-way assignment at an unsignalized intersection in the human-machine hybrid driving environment. Fuzzy logic method was used to construct the driver's risk perception model. Then the human-driven vehicle’s behavior selection strategy was predicted based on the risk equilibrium theory and the acceptable risk interval. Finally the comprehensive utility function of autonomous vehicle was established, using game theory to solve the optimal behavior strategy combination, and realize the coordinated control of vehicles at an unsignalized intersection. Simulation results show that autonomous vehicles can effectively avoid collision accidents and improve the efficiency of autonomous vehicles passing through unsignalized intersections when facing heterogeneous drivers and guarantees that driver risk perception values are within acceptable ranges. Among the 15 experiments conducted, 93.3% of the experimental groups were able to ensure that the time difference of vehicles passing through the conflict point was larger than the acceptable safe transit interval. The travel time of the autonomous vehicle was 1.07~2.43 times that of free flow under different situations. Experimental comparison between the proposed method and the unpredicted selfish game method shows that the proposed method can significantly improve the autonomous vehicle’s traffic efficiency.
Keywords:unsignalized intersection  mixed traffic environment  behavior prediction and decision-making  fuzzy logic  cooperative control  
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号