首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLOv5的轻量化航空目标检测方法
引用本文:杨小冈,高凡,卢瑞涛,李维鹏,张涛,曾俊. 基于改进YOLOv5的轻量化航空目标检测方法[J]. 信息与控制, 2022, 51(3): 361-368. DOI: 10.13976/j.cnki.xk.2021.1240
作者姓名:杨小冈  高凡  卢瑞涛  李维鹏  张涛  曾俊
作者单位:火箭军工程大学导弹工程学院, 陕西 西安 710025
基金项目:国家自然科学基金(61806209);陕西省自然科学基金(2020JQ-490)
摘    要:为解决硬件平台资源受限条件下的实时航空目标检测需求,在基于改进YOLOv5的基础上,提出了一种针对移动端设备/边缘计算的轻量化航空目标检测方法。首先以MobileNetv3为基础搭建特征提取网络,设计通道注意力增强结构MNtECA (MobileNetv3 with Efficient Channel Attention)提高特征提取能力;其次在深度可分离卷积层增加1×1的卷积,在减少卷积结构参数的同时提高网络的拟合能力;最后对检测网络进行迭代通道剪枝实现模型压缩和加速。实验选取DIOR (Object Detection in Optical Remote Sensing Images)数据集进行训练和测试,并在嵌入式平台(NVIDIA Jetson Xavier NX)对轻量级模型进行推理验证。结果表明,所提出的轻量级模型大幅降低了参数和计算量,同时具有较高精度,实现了移动端设备/边缘计算的实时航空目标检测。

关 键 词:深度学习  目标检测  注意力  模型压缩  通道剪枝  
收稿时间:2021-06-09

Lightweight Aerial Object Detection Method Based on Improved YOLOv5
YANG Xiaogang,GAO Fan,LU Ruitao,LI Weipeng,ZHANG Tao,ZENG Jun. Lightweight Aerial Object Detection Method Based on Improved YOLOv5[J]. Information and Control, 2022, 51(3): 361-368. DOI: 10.13976/j.cnki.xk.2021.1240
Authors:YANG Xiaogang  GAO Fan  LU Ruitao  LI Weipeng  ZHANG Tao  ZENG Jun
Affiliation:College of Missile Engineering, Rocket Force Engineering University, Xi'an 710025, China
Abstract:In order to solve the real-time aerial object detection requirements under the condition of limited hardware platform resources, we propose a lightweight aerial object detection method for mobile devices/edge computing based on the improved YOLOv5. Firstly, we build a feature extraction network based on MobileNetv3, and design a channel attention enhancement structure MNtECA to improve the feature extraction ability. Then, we add 1×1 convolution to the depthwise separable convolutions layer to reduce the parameters of convolution structure while improving the fitting ability of the network. Finally, we force iterative channel-level pruning to the detection network to achieve model compression and acceleration. We conduct the training and testing experiments on the DIOR dataset, and perform inference verification on the embedded platform (NVIDIA Jetson Xavier NX). The results prove that the proposed lightweight model reduces the number of parameters and the amount of calculation greatly with high accuracy, realizing the real-time aerial object detection of mobile devices/edge computing.
Keywords:deep learning  object detection  attention  model compression  channel-level pruning  
点击此处可从《信息与控制》浏览原始摘要信息
点击此处可从《信息与控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号