首页 | 本学科首页   官方微博 | 高级检索  
     

视觉感知的无人机端到端目标跟踪控制技术
引用本文:华夏,王新晴,芮挺,邵发明,王东. 视觉感知的无人机端到端目标跟踪控制技术[J]. 浙江大学学报(工学版), 2022, 56(7): 1464-1472. DOI: 10.3785/j.issn.1008-973X.2022.07.022
作者姓名:华夏  王新晴  芮挺  邵发明  王东
作者单位:中国人民解放军陆军工程大学 野战工程学院,江苏 南京 210007
基金项目:国家重点研发计划资助项目(2016YFC0802904);国家自然科学基金资助项目(61671470);江苏省自然科学基金资助项目(BK20161470);中国博士后科学基金第62批面上资助项目(2017M623423)
摘    要:针对无人机机动目标跟踪的自主运动控制问题,提出连续型动作输出的无人机端到端主动目标跟踪控制方法. 设计基于视觉感知和深度强化学习策略的端到端决策控制模型,将无人机观察的连续帧视觉图像作为输入状态,输出无人机飞行动作的连续型控制量. 为了提高控制模型的泛化能力,改进基于任务分解和预训练的高效迁移学习策略. 仿真结果表明,该方法能够在多种机动目标跟踪任务中实现无人机姿态的自适应调整,使得无人机在空中能够稳定跟踪移动目标,显著提高了无人机跟踪控制器在未知环境下的泛化能力和训练效率.

关 键 词:深度强化学习  机器视觉  自主无人机  迁移学习  目标跟踪  

Vision-driven end-to-end maneuvering object tracking of UAV
Xia HUA,Xin-qing WANG,Ting RUI,Fa-ming SHAO,Dong WANG. Vision-driven end-to-end maneuvering object tracking of UAV[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(7): 1464-1472. DOI: 10.3785/j.issn.1008-973X.2022.07.022
Authors:Xia HUA  Xin-qing WANG  Ting RUI  Fa-ming SHAO  Dong WANG
Abstract:An end-to-end active object tracking control method of UAV with continuous motion output was proposed aiming at the autonomous motion control problem of UAV maneuvering object tracking. An end-to-end decision-making control model based on visual perception and deep reinforcement learning strategy was designed. The continuous visual images observed by UAV were taken as the input state, and the continuous control quantity of UAV flight action was output. An efficient transfer learning strategy based on task decomposition and pre training was proposed in order to improve the generalization ability of control model. The simulation results show that the method can realize the adaptive adjustment of UAV attitude in a variety of maneuvering object tracking tasks and make the UAV stably track the moving object in the air. The generalization ability and training efficiency of UAV tracking controller in unknown environment were significantly improved.
Keywords:deep reinforcement learning  machine vision  autonomous UAV  transfer learning  object tracking  
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号