Performance evaluation of generalized multi-state k-out-of-n systems |
| |
Authors: | Zuo M.J. Zhigang Tian |
| |
Affiliation: | Dept. of Mech. Eng., Alberta Univ., Edmonton, Alta., Canada; |
| |
Abstract: | The generalized multi-state k-out-of-n:G system model defined by Huang provides more flexibilities for modeling of multi-state systems. However, the performance evaluation algorithm they proposed for such systems is not efficient, and it is applicable only when the k/sub i/ values follow a monotonic pattern. In this paper, we defined the concept of generalized multi-state k-out-of-n:F systems. There is an equivalent generalized multi-state k-out-of-n:G system with respect to each generalized multi-state k-out-of-n:F system, and vice versa. The form of minimal cut vector for generalized multi-state k-out-of-n:F systems is presented. An efficient recursive algorithm based on minimal cut vectors is developed to evaluate the state distributions of a generalized multi-state k-out-of-n:F system. Thus, a generalized multi-state k-out-of-n:G system can first be transformed to the equivalent generalized multi-state k-out-of-n:F system, and then be evaluated using the proposed recursive algorithm. Numerical examples are given to illustrate the effectiveness and efficiencies of the proposed recursive algorithms. |
| |
Keywords: | |
|
|