首页 | 本学科首页   官方微博 | 高级检索  
     


In situ nanomechanics of GaN nanowires
Authors:Huang Jian Yu  Zheng He  Mao S X  Li Qiming  Wang George T
Affiliation:Sandia National Laboratories, Albuquerque, New Mexico 87185, United States. jhuang@sandia.gov
Abstract:The deformation, fracture mechanisms, and the fracture strength of individual GaN nanowires were measured in real time using a transmission electron microscope-scanning probe microscope (TEM-SPM) platform. Surface mediated plasticity, such as dislocation nucleation from a free surface and plastic deformation between the SPM probe (the punch) and the nanowire contact surface were observed in situ. Although local plasticity was observed frequently, global plasticity was not observed, indicating the overall brittle nature of this material. Dislocation nucleation and propagation is a precursor before the fracture event, but the fracture surface shows brittle characteristic. The fracture surface is not straight but kinked at (10-10) or (10-11) planes. Dislocations are generated at a stress near the fracture strength of the nanowire, which ranges from 0.21 to 1.76 GPa. The results assess the mechanical properties of GaN nanowires and may provide important insight into the design of GaN nanowire devices for electronic and optoelectronic applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号