首页 | 本学科首页   官方微博 | 高级检索  
     

一维卷积神经网络用于雷达高分辨率距离像识别
引用本文:殷和义,郭尊华. 一维卷积神经网络用于雷达高分辨率距离像识别[J]. 电讯技术, 2018, 58(10)
作者姓名:殷和义  郭尊华
作者单位:山东大学(威海) 机电与信息工程学院,山东 威海 264209,山东大学(威海) 机电与信息工程学院,山东 威海 264209
基金项目:国家自然科学基金资助项目(61401252)
摘    要:针对人工提取高分辨率距离像(HRRP)优良特征比较困难的问题,研究了基于一维卷积神经网络(CNN)的HRRP识别方法。利用CNN具有分层学习特征的能力,训练CNN自动地从HRRP中学习有用的特征并分类。在仿真实验中描述了网络的相关配置,分析了不同激活函数、不同参数、不同网络结构的识别性能,对比了CNN与其他分类器的识别结果,用可视化特征图直观地说明了CNN通过卷积层能够学习到易于分辨的特征。实验结果表明CNN具有很好的识别性能。

关 键 词:目标识别;高分辨率距离像;卷积神经网络

Radar HRRP target recognition with one-dimensional CNN
YIN Heyi and GUO Zunhua. Radar HRRP target recognition with one-dimensional CNN[J]. Telecommunication Engineering, 2018, 58(10)
Authors:YIN Heyi and GUO Zunhua
Affiliation:School of Mechanical,Electrical & Information Engineering,Shandong University,Weihai,Weihai 264209,China and School of Mechanical,Electrical & Information Engineering,Shandong University,Weihai,Weihai 264209,China
Abstract:The one-dimensional Convolutional Neural Network(CNN) is applied to High Range Resolution Profile(HRRP) recognition to avoid the difficulties of extracting good features manually.The CNN can learn features hierarchically and extract useful features from HRRP and classify targets automatically.The configuration of the CNN is described,and the recognition performance of different activation functions,parameters,network structures and different classifiers are compared by simulations.Visual feature maps demonstrate that CNN can obtain distinguishable features through convolutional layer.The simulation results show that CNN can get features from HRRP effectively and has a good recognition performance.
Keywords:target recognition  high range resolution profile  convolutional neural network
点击此处可从《电讯技术》浏览原始摘要信息
点击此处可从《电讯技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号