首页 | 本学科首页   官方微博 | 高级检索  
     

自适应扩展卡尔曼滤波电池荷电状态估算方法
引用本文:徐保荣,王兴成,张齐,王露,王大方. 自适应扩展卡尔曼滤波电池荷电状态估算方法[J]. 哈尔滨工业大学学报, 2021, 53(7): 92-98
作者姓名:徐保荣  王兴成  张齐  王露  王大方
作者单位:中国人民解放军32184部队,北京100071;哈尔滨工业大学(威海)汽车工程学院,山东 威海264209
基金项目:军内科研项目(LJ2017121); 山东省自然科学基金(ZR2017MEE011)
摘    要:为更精确预估电动汽车动力源的荷电状态,优化戴维南等效电路模型,用自适应扩展卡尔曼滤波进行荷电状态估算.对实验电池进行外特性数据获取实验,分别得到在充放电状态下的开路电压曲线,在开路电压-荷电状态对应曲线中考虑充放电状态变化的因素.对离线参数辨识进行优化处理,在固定参数离线辨识的基础上考虑充放电状态和荷电状态,并与在线辨...

关 键 词:电池模型  荷电状态估算  离线辨识  在线辨识  自适应卡尔曼滤波
收稿时间:2020-06-25

Adaptive extended Kalman filter for estimating the charging state of battery
XU Baorong,WANG Xingcheng,ZHANG Qi,WANG Lu,WANG Dafang. Adaptive extended Kalman filter for estimating the charging state of battery[J]. Journal of Harbin Institute of Technology, 2021, 53(7): 92-98
Authors:XU Baorong  WANG Xingcheng  ZHANG Qi  WANG Lu  WANG Dafang
Affiliation:32184 troops, PLA, Beijing 100071, China;School of Automotive Engineering, Harbin Institute of Technology, Weihai, Weihai 264209,Shandong, China
Abstract:To more accurately estimate the state of charge of the power source of EVs, Thevenin equivalent circuit model is optimized, and the charge of state is estimated by adaptive extended Kalman filter. Firstly, the external characteristic data of the experimental battery and the open circuit voltage curves under charge and discharge state are obtained. The factors of charge and discharge state change are added to the corresponding curve of open circuit voltage-charge of state. Secondly, in the aspect of parameter identification, the off-line identification is optimized. The charge-discharge state and charge of state are considered on the basis of the off-line identification of fixed parameters. The estimation of terminal voltage is compared with on-line identification. Finally, based on the optimized battery model, the charge of state is estimated by adaptive extended Kalman filter and its comparison algorithm. And the estimation accuracy of terminal voltage and charge of state is compared under complex pulse current conditions. Experimental results show that the accuracy of terminal voltage estimation for off-line identification of optimized battery model is less than 0.01 V, which is higher than that for on-line identification. Based on the optimization model and off-line identification, adaptive extended Kalman and extended Kalman and interactive multi-model algorithm are constructed to estimate the charged state of the battery. The experimental results show that the estimation accuracy of charged state based on optimization model adaptive algorithm is 0.05, which is higher than that of the two contrast algorithms. The accuracy of adaptive extended Kalman filter based on optimization model is higher than that of interactive multi-model extended Kalman filter and extended Kalman filter.
Keywords:battery model   state-of-charge estimation   offline identification   online identification   adaptive extended Kalman filter
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《哈尔滨工业大学学报》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号