摘 要: | 针对跳频信号分选存在人工提取参数特征具有复杂性的问题,提出了一种基于深度学习的识别方法。首先对跳频信号进行短时傅里叶变换,得到二维的时频矩阵;接着提取信号的轮廓特征,构造三维矩阵作等高线图,并对等高线图进行预处理;最后把预处理后的等高线图输入到卷积神经网络中进行训练、测试,进而实现分类识别。仿真结果表明,在不需要复杂的人工提取参数特征的基础上,在分选率为100〖WT《Times New Roman》〗%〖WTBZ〗时,所提方法经裁剪处理下的信噪比为-15 dB,比支持向量机和传统K-Means聚类算法都低10 dB。实测数据的算法验证表明,所提方法能够将大疆精灵4Pro、hm无人机、司马航模X8HW以及大疆悟2这四类无人机正确分类。
|