首页 | 本学科首页   官方微博 | 高级检索  
     


Theory of "frozen waves": modeling the shape of stationary wave fields
Authors:Zamboni-Rached Michel  Recami Erasmo  Hernández-Figueroa Hugo E
Affiliation:Department of Microwaves and Optics, Faculty of Electrical Engineering, State University at Campinas, 13083-970 Campinas, SP, Brazil. mzamboni@dmo.fee.unicamp.br
Abstract:In this work, starting by suitable superpositions of equal-frequency Bessel beams, we develop a theoretical and experimental methodology to obtain localized stationary wave fields (with high transverse localization) whose longitudinal intensity pattern can approximately assume any desired shape within a chosen interval 0 < or = z < or = L of the propagation axis z. Their intensity envelope remains static, i.e., with velocity v = 0, so we have named "frozen waves" (FWs) these new solutions to the wave equations (and, in particular, to the Maxwell equation). Inside the envelope of a FW, only the carrier wave propagates. The longitudinal shape, within the interval 0 < or = z < or = L, can be chosen in such a way that no nonnegligible field exists outside the predetermined region (consisting, e.g., in one or more high-intensity peaks). Our solutions are notable also for the different and interesting applications they can have--especially in electromagnetism and acoustics--such as optical tweezers, atom guides, optical or acoustic bistouries, and various important medical apparatuses.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号