摘 要: | 风电机组在齿轮箱油温过高时会导致机组限功率运行,影响机组发电效率。传统应对风机高温降容状态多采用阈值判断,反应迟缓,加剧风机齿轮箱劣化趋势。利用贝叶斯网络对风机高温降容状态进行评估,为提取并准确合理地利用机组数据采集与监视控制系统(supervisorycontroland dataacquisitionsystem,SCADA)各个相关状态参数之间的耦合特性,通过vine-Copula模型对机组各个状态参数进行相关性分析,建立更符合机组实际运行状态的贝叶斯概率图形网络,实现对机组高温降容状态的评估。通过交叉熵算法对模型输出结果进行评价,发现与朴素贝叶斯模型相比,vine-Copula贝叶斯网络评估结果更为精确可靠,所建模型更符合机组实际运行工况,能够为现场的运维人员制定准确合理的运行和维护方案提供参考。
|