摘 要: | 为了获得可靠的训练样本及提高遥感影像变化检测的精度,提出基于深度学习的遥感影像变化检测方法.采用结构相似性方法(SSIM)选取纹理特征(灰度共生矩阵法),通过融合变化向量分析(CVA)方法获取不同时相遥感影像差异图(DI)及纹理特征差异图获得差异影像,并采用构造的变分去噪模型对差异影像进行去噪.利用频域显著性方法获取去噪差异影像的显著性图,通过模糊c-均值(FCM)算法对粗变化检测图(对显著性图选取阈值获得的)进行预分类(变化类、未变化类及未确定类).将从遥感影像上提取的变化像素和未变化像素的邻域特征引入深度神经网络模型进行训练,并利用训练好的深度神经网络模型对差异影像进行变化检测,得到最终的变化检测图.对3组遥感影像数据集进行变化检测实验,结果表明本研究方法的变化检测精度高于其他比较方法.
|