首页 | 本学科首页   官方微博 | 高级检索  
     

改进边界Fisher分析近邻选择的硬件木马检测
引用本文:王晓晗,王韬,张阳,刘广凯. 改进边界Fisher分析近邻选择的硬件木马检测[J]. 浙江大学学报(工学版), 2020, 54(1): 152-159. DOI: 10.3785/j.issn.1008-973X.2020.01.018
作者姓名:王晓晗  王韬  张阳  刘广凯
作者单位:中国人民解放军陆军工程大学石家庄校区 装备模拟训练中心,河北 石家庄 050003
基金项目:国家自然科学基金资助项目(61602505)
摘    要:针对旁路分析技术对小规模硬件木马检测精度低的问题,提出基于边界Fisher分析的硬件木马检测方法.定义规则式选择近邻样本,以减小样本与其同类近邻样本间距离和增大样本与其异类近邻样本间距离的方式构建投影子空间,在不对数据分布作任何假设的前提下,提取原始功耗旁路信号中的差异特征,实现硬件木马检测. AES加密电路中的硬件木马检测实验表明,该方法能够检测出占原始电路规模0.02%的硬件木马,优于已有的检测方法.

关 键 词:集成电路  旁路分析  硬件木马检测  流形学习  边界Fisher分析  

Hardware Trojan detection based on improved marginal Fisher analysis nearest neighbor selection
Xiao-han WANG,Tao WANG,Yang ZHANG,Guang-kai LIU. Hardware Trojan detection based on improved marginal Fisher analysis nearest neighbor selection[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(1): 152-159. DOI: 10.3785/j.issn.1008-973X.2020.01.018
Authors:Xiao-han WANG  Tao WANG  Yang ZHANG  Guang-kai LIU
Abstract:A hardware Trojan detection method based on marginal Fisher analysis was proposed aiming at the problem of low detection accuracy for small-scale hardware Trojan by side-channel analysis. The rule was defined to select the nearest neighbor samples. Then the projection subspace was constructed by reducing the distance between the samples and their nearest neighbor samples in the same class and increasing the distance between the samples and their nearest neighbor samples in different class. The difference features in the original side-channel signals was found without any assumptions about data distribution, and the detection of hardware Trojan was achieved. The hardware Trojan detection experiment in AES encryption circuit shows that the hardware Trojan whose scale is 0.02% of the original circuit can be detected by the method. The method is better than existing detection methods.
Keywords:integrated circuit  side-channel analysis  hardware Trojan detection  manifold learning  marginal Fisher analysis  
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号