首页 | 本学科首页   官方微博 | 高级检索  
     

基于多级特征并联的轻量级图像语义分割
引用本文:周登文,田金月,马路遥,孙秀秀. 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报(工学版), 2020, 54(8): 1516-1524. DOI: 10.3785/j.issn.1008-973X.2020.08.009
作者姓名:周登文  田金月  马路遥  孙秀秀
作者单位:华北电力大学 控制与计算机工程学院,北京 102206
基金项目:中央高校基本科研业务费专项资金资助项目(2018ZD06)
摘    要:针对当前语义分割算法普遍具有网络结构复杂和计算开销巨大的问题,为了综合提高语义分割算法实时性和精确度,提出计算高效的基于多级特征并联网络(LSSN)的轻量级图像语义分割网络. 该算法综合考虑网络的参数量、运行速度和性能,能更好地应用到嵌入式设备和可移动设备上. 应用微调的深度卷积神经分类网络作为特征提取网络结构,提取网络不同深浅层语义和位置特征. 提出空洞残差增强模块和深度空洞空间金字塔模块分别处理来自特征提取基准网络的深层特征和浅层特征,并将深浅层特征按特定维度比例以并联的方式进行融合. 所提方法在PASCAL VOC 2012数据集上准确度(平均交并比)为77.13%,与当前具有高性能的语义分割算法和实时语义分割算法相比,能更好地平衡网络的实时性和精确度,具有更优的实用价值和性能效果.

关 键 词:深度学习  全卷积神经网络  语义分割  特征融合  空洞卷积  

Lightweight image semantic segmentation based on multi-level feature cascaded network
Deng-wen ZHOU,Jin-yue TIAN,Lu-yao MA,Xiu-xiu SUN. Lightweight image semantic segmentation based on multi-level feature cascaded network[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(8): 1516-1524. DOI: 10.3785/j.issn.1008-973X.2020.08.009
Authors:Deng-wen ZHOU  Jin-yue TIAN  Lu-yao MA  Xiu-xiu SUN
Abstract:Semantic segmentation algorithms usually have complex network structure and huge computation. A lightweight image semantic segmentation algorithm based on multi-level feature cascaded network was proposed to improve the infer speed and accuracy of semantic segmentation. The number of parameters, running speed and performance of the proposed network were considered comprehensively, which can be better applied to embedded devices and mobile devices. The fine-turned deep convolutional neural classification network was used for feature extraction, which can extract both the semantic and location characteristics of different depth layers in the network. An atrous residual feature refine module and a deep atrous spatial pyramid pooling module were used to fuse the deep and shallow features, respectively. And then, the features from deep and shallow layers were fused in parallel with a specific proportion. The mean intersection over union of the proposed approach on the PASCAL VOC 2012 dataset was 77.13%. The proposed method has a better balance between the real-time performance and segmentation accuracy, and has good performance and practical value compared with the current state of the art semantic segmentation and real-time semantic segmentation algorithms.
Keywords:deep learning  full convolutional neural network  semantic segmentation  feature fusion  atrous convolution  
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号