首页 | 本学科首页   官方微博 | 高级检索  
     

基于空间约束的自适应单目3D物体检测算法
引用本文:张峻宁,苏群星,刘鹏远,王正军,谷宏强. 基于空间约束的自适应单目3D物体检测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1138-1146. DOI: 10.3785/j.issn.1008-973X.2020.06.010
作者姓名:张峻宁  苏群星  刘鹏远  王正军  谷宏强
作者单位:1. 陆军工程大学 导弹工程系,河北 石家庄 0500032. 陆军指挥学院,江苏 南京 2100003. 32181部队,河北 石家庄 050003
基金项目:国家自然科学基金资助项目(51205405,51305454)
摘    要:引入无须先验模版匹配的3D目标检测算法,通过简化消失点(VP)计算和改进角点提取等步骤,提出一种自适应的单目3D物体检测算法. 针对复杂场景下VP 计算易受干扰的问题,根据室内场景中世界坐标系、相机以及目标物体之间的空间关系,建立目标、相机偏航角与VP之间的约束模型,提出一种基于空间约束的 M 估计子抽样一致性(MSAC)消失点计算方法;为了提高3D框的估计精度,在VP透视关系的基础上,提出一种自适应估计3D框角点的方法,通过建立目标3D轮廓线与2D框的空间约束关系,实现目标物体的3D框快速检测. 相关数据集的实验结果表明,所提方法相比于其他算法不仅在室内场景下具有估计精度高、实时性好的优势,而且在室外场景实验下也具有更好的精度和鲁棒性.

关 键 词:3D目标检测  透视原理  消失点(VP)  空间约束  M 估计子抽样一致性(MSAC)算法  

Adaptive monocular 3D object detection algorithm based on spatial constraint
Jun-ning ZHANFG,Qun-xing SU,Peng-yuan LIU,Zheng-jun WANG,Hong-qiang GU. Adaptive monocular 3D object detection algorithm based on spatial constraint[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(6): 1138-1146. DOI: 10.3785/j.issn.1008-973X.2020.06.010
Authors:Jun-ning ZHANFG  Qun-xing SU  Peng-yuan LIU  Zheng-jun WANG  Hong-qiang GU
Abstract:The 3D-Cube algorithm without prior template matching was introduced, and an algorithm for adaptive detection of 3D objects was proposed. Firstly, the relationship among the camera, the object and the VP vanishing point was established, according to the transformation relationship between the world coordinate system, the camera and the moving target. By combining the spatial constraint relationship, a space constrained M-estimator sample and consensus (MSAC) algorithm was proposed to improve the robustness in complex scenes. To improve the accuracy of 3D frame estimation, an adaptive method of 3D frame corner estimation was proposed based on the VP perspective relationship. The 3D bounding box of the target object could be detected quickly by building the spatial constraint relation between 3D contour and 2D frame of the target. The experimental results show that the proposed method has the advantages of high accuracy and real-time performance, compared with other algorithms in indoor scenes, which also has better accuracy and robustness in outdoor scene experiment.
Keywords:3D target detection  perspective principle  vanishing point (VP)  space constraint  M-estimator sample and consensus (MSAC) algorithm  
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号