首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient solving methods exploiting sparsity of matrix in real-time multibody dynamic simulation with relative coordinate formulation
Authors:Gyoojae Choi  Yungmyun Yoo  Jongsoon Im
Affiliation:(3) Dept. Chemical Engin. Univ. Rhode Island, Kingston, RI 02881–0805, USA
Abstract:In this paper, new methods for efficiently solving linear acceleration equations of multibody dynamic simulation exploiting sparsity for real-time simulation are presented. The coefficient matrix of the equations tends to have a large number of zero entries according to the relative joint coordinate numbering. By adequate joint coordinate numbering, the matrix has minimum off-diagonal terms and a block pattern of non-zero entries and can be solved efficiently. The proposed methods, using sparse Cholesky method and recursive block mass matrix method, take advantages of both the special structure and the sparsity of the coefficient matrix to reduce computation time. The first method solves thenxn sparse coefficient matrix for the accelerations, wheren denotes the number of relative coordinates. In the second method, for vehicle dynamic simulation, simple manipulations bring the original problem of dimensionnxn to an equivalent problem of dimension 6×6 to be solved for the accelerations of a vehicle chassis. For vehicle dynamic simulation, the proposed solution methods are proved to be more efficient than the classical approaches using reduced Lagrangian multiplier method. With the methods computation time for real-time vehicle dynamic simulation can be reduced up to 14 per cent compared to the classical approach.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号