首页 | 本学科首页   官方微博 | 高级检索  
     


Exploring Two‐Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next‐Generation,High‐Performance,Thin‐Film Transistor Technologies
Authors:John G. Labram  Yen‐Hung Lin  Thomas D. Anthopoulos
Abstract:In the last decade, metal oxides have emerged as a fascinating class of electronic material, exhibiting a wide range of unique and technologically relevant characteristics. For example, thin‐film transistors formed from amorphous or polycrystalline metal oxide semiconductors offer the promise of low‐cost, large‐area, and flexible electronics, exhibiting performances comparable to or in excess of incumbent silicon‐based technologies. Atomically flat interfaces between otherwise insulating or semiconducting complex oxides, are also found to be highly conducting, displaying 2‐dimensional (2D) charge transport properties, strong correlations, and even superconductivity. Field‐effect devices employing such carefully engineered interfaces are hoped to one day compete with traditional group IV or III–V semiconductors for use in the next‐generation of high‐performance electronics. In this Concept article we provide an overview of the different metal oxide transistor technologies and potential future research directions. In particular, we look at the recent reports of multilayer oxide thin‐film transistors and the possibility of 2D electron transport in these disordered/polycrystalline systems and discuss the potential of the technology for applications in large‐area electronics.
Keywords:energy quantization  metal oxides  semiconductors  transistors  heterostructures  two‐dimensional transport  solution processing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号