首页 | 本学科首页   官方微博 | 高级检索  
     


Self‐Stacked Reduced Graphene Oxide Nanosheets Coated with Cobalt–Nickel Hydroxide by One‐Step Electrochemical Deposition toward Flexible Electrochromic Supercapacitors
Authors:Fabian Grote  Zi‐You Yu  Jin‐Long Wang  Shu‐Hong Yu  Yong Lei
Abstract:The implementation of an optical function into supercapacitors is an innovative approach to make energy storage devices smarter and to meet the requirements of smart electronics. Here, it is reported for the first time that nickel–cobalt hydroxide on reduced graphene oxide can be utilized for flexible electrochromic supercapacitors. A new and straightforward one‐step electrochemical deposition process is introduced that is capable of simultaneously reducing GO and depositing amorphous Co(1−x)Ni x (OH)2 on the rGO. It is shown that the rGO nanosheets are homogeneously coated with metal hydroxide and are vertically stacked. No high temperature processes are used so that flexible polymer‐based substrates can be coated. The synthesized self‐stacked rGO–Co(1−x)Ni x (OH)2 nanosheet material exhibits pseudocapacitive charge storage behavior with excellent rate capability, high Columbic efficiency, and nondiffusion limited behavior. It is shown that the electrochemical behavior of the Ni(OH)2 can be modulated, by simultaneously depositing nickel and cobalt hydroxide, into broad oxidization and reduction bands. Further, the material exhibits electrochromic property and can switch between a bleached and transparent state. Literature comparison reveals that the performance characteristics of the rGO–Co(1−x)Ni x (OH)2 nanosheet material, in terms of gravimetric capacitance, areal capacitance, and long‐term cycling stability, are among the highest reported values of supercapacitors with electrochromic property.
Keywords:electrochromics  metal hydroxides  nanosheets  reduced graphene oxides  supercapacitors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号