首页 | 本学科首页   官方微博 | 高级检索  
     


Shape‐Dependent Activity of Ceria for Hydrogen Electro‐Oxidation in Reduced‐Temperature Solid Oxide Fuel Cells
Authors:Xiaofeng Tong  Ting Luo  Xie Meng  Hao Wu  Junliang Li  Xuejiao Liu  Xiaona Ji  Jianqiang Wang  Chusheng Chen  Zhongliang Zhan
Abstract:Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3‐δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well‐defined surface terminations are confirmed by the high‐resolution transmission electron microscopy — (111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature‐programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro‐oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape‐dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced‐temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets.
Keywords:ceria  hydrogen electro‐oxidation  nanocrystals  solid oxide fuel cells  fuel cells  structure sensitivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号