首页 | 本学科首页   官方微博 | 高级检索  
     


An elastic-plastic finite element alternating method for analyzing wide-spread fatigue damage in aircraft structures
Authors:C R Pyo  H Okada  S N Atluri
Affiliation:(1) Computational Mechanics Center, Georgia Institute of Technology, 30332-0356 Atlanta, GA, USA
Abstract:In this paper, a new analytical technique to study the effect of wide-spread fatigue damage in ductile panels is presented. The main purpose of the study is to develop an efficient methodology to predict the maximum load carrying capacity of panels with cracks. The problem arises especially in the fuselage skin of aging airplanes, in which cracks initiate from a row of rivet holes. This problem is known as Multi Site Damage (MSD) in aging aircraft. It is very important to estimate the load carrying capacity. Usually, the approach based on elastic fracture mechanics may overestimate the load capacity. It is very important for the aircraft structure with MSD to estimate the load carrying capacity of such damaged structures. Approaches based on elastic fracture mechanics often lead to a considerable error. In this paper, the Elastic Finite Element Alternating Method (EFEAM) has been extended to the case of elastic-plastic fracture of panels with MSD cracks. In EFEAM, analytical solutions to crack problems in an infinite plate are employed. In this study, we adopted an analytical solution for a row of cracks in an infinite panel. Furthermore, the plastic deformation is accounted for, by using the initial stress algorithm. The T infepsi sup* integral is employed for the fracture criterion. The methodology developed in the present study can be called as Elastic-Plastic Finite Element Alternating Method (EPFEAM) for MSD problems. A series of studies on the maximum load capacity of panels with a row of cracks has been conducted.The support of this work by the Federal Aviation Administration through a grant to the Center of Excellence for Computational Modeling of Aircraft Structures, at the Georgia Institute of Technology, is sincerely appreciated.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号