首页 | 本学科首页   官方微博 | 高级检索  
     

陀螺系统的受迫振动及其时滞反馈控制
引用本文:李欣业,张利娟,张华彪. 陀螺系统的受迫振动及其时滞反馈控制[J]. 振动与冲击, 2012, 31(9): 63-68. DOI:  
作者姓名:李欣业  张利娟  张华彪
作者单位:1河北工业大学机械工程学院,天津 300130;2哈尔滨工业大学航天学院,哈尔滨,150001
基金项目:国家自然科学基金(10872063)
摘    要:对简谐激励下陀螺系统的受迫振动及其在含时滞的位移和速度反馈控制下的动力学行为进行研究。利用拉格朗日方程,建立了两自由度陀螺系统的运动微分方程。考虑主共振和1:1内共振的情况,采用平均法得到了平均方程。通过对平均方程进行化简,得到了关于系统振幅的分岔方程,分别讨论了各个参数对系统振幅的影响。根据奇异性理论,分析了参数变化对系统分岔行为的影响。对受迫陀螺系统施加含时滞的位移和速度反馈控制,讨论了反馈增益和时滞对系统振幅的影响。

关 键 词:微机械振动式陀螺系统   非线性动力学   时滞反馈控制   分岔   
收稿时间:2010-12-23
修稿时间:2011-05-03

Forced vibration of a gyroscope system and its delayed feedback control
LI Xin-ye , ZHANG Li-juan , ZHANG Hua-biao. Forced vibration of a gyroscope system and its delayed feedback control[J]. Journal of Vibration and Shock, 2012, 31(9): 63-68. DOI:  
Authors:LI Xin-ye    ZHANG Li-juan    ZHANG Hua-biao
Affiliation:1.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China;2.School of Astronautics , Harbin Institute of Technology, Harbin 150001 , China
Abstract:The differential equations of motion with two degrees of freedom for a gyroscope system and its delayed feedback control were established based on the Lagrange equation.For the case of primary resonance and 1:1 internal resonance,the averaging method was used to derive the averaged equations.Then according to the theory of singularity,the bifurcation equation,acquired from the averaged equations,was simplified to analyse the bifurcation behavior of the system.Finally,the effects of feedback parameters on the amplitude of forced vibration were discussed when the sysyem is acted by displacement and velocity feedback control with time delay.
Keywords:micromachined vibratory gyroscopes system  nonlinear dynamics  feedback control with time delay  bifurcation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号