首页 | 本学科首页   官方微博 | 高级检索  
     


An experimental and numerical study on characteristics of laminar premixed H2/CO/CH4/air flames
Authors:T.S. Cheng  Y.-C. ChangY.-C. Chao  G.-B. ChenY.-H. Li  C.-Y. Wu
Affiliation:a Department of Mechanical Engineering, Chung Hua University, 707, Sec. 2, Wufu Rd., Hsinchu 300, Taiwan, ROC
b Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan, ROC
c Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC
d Department of Electro-Optical Science and Engineering, Kao Yuan University, Kaohsiung County 821, Taiwan, ROC
Abstract:The effects of variations in the fuel composition on the characteristics of H2/CO/CH4/air flames of gasified biomass are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position and temperature are performed in the premixed stoichiometric H2/CO/CH4/air opposed-jet flames with various H2 and CO contents in the fuel. The adiabatic flame temperatures and laminar burning velocities are calculated using the EQUIL and PREMIX codes of Chemkin collection 3.5, respectively. Whereas the flame structures of the laminar premixed stoichiometric H2/CO/CH4/air opposed-jet flames are simulated using the OPPDIF package with the GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position and temperature of the stoichiometric H2/CO/CH4/air opposed-jet flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that the reaction rate of reactions (R38), (R46), and (R84) increase with increasing H2 content in the fuel mixture. It is also found that the increase in the laminar flame speed with H2 addition is most likely due to an increase in active radicals during combustion (chemical effect), rather than from changes in the adiabatic flame temperature (thermal effect). Chemical kinetic structure and sensitivity analyses indicate that for the stoichiometric H2/CO/CH4/air flames with fixed H2 concentration in the fuel mixture, the reactions (R99) and (R46) play a dominant role in affecting the laminar burning velocity as the CO content in the fuel is increased.
Keywords:Gasified biomass   Premixed opposed-jet flames   Laminar burning velocity   Chemical kinetic structure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号