首页 | 本学科首页   官方微博 | 高级检索  
     


Phased smoke detection algorithm using dual network fusion
Authors:DU Lizhao  XU Yan  ZHANG Wei
Affiliation:1. School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China;2. School of Microelectronics, Tianjin University, Tianjin 300072, China
Abstract:Existing video smoke detection methods have a low detection accuracy in complex scenes and cannot detect smoke areas in video frames accurately. In this paper, a phased smoke detection algorithm that combines the smoke movement process and the target detection algorithm is proposed. First, an improved ViBe algorithm based on smoke color features is used to extract the continuously moving smoke in video. Then, the YOLO v3 model is used as the target detection network. The channel attention mechanism is added to the residual structure of its backbone network. Focal-loss and GIoU are utilized to improve the loss function. According to the test of the smoke image data set, the detection time of the improved network on a single picture is 38.4ms and the mAP reaches 92.13%, which is 2.19% higher than that by the original model. While extracting smoke motion, the same frame is sent to the improved YOLO v3 for smoke detection. Finally, comprehensive discrimination is made based on the smoke detection results in stages. Public smoke video test results show that the algorithm has an average detection rate of 98.88%, which proves that the algorithm has a strong adaptability, a high detection efficiency in complex scenes and a high practical application value.
Keywords:smoke detection  ViBe algorithm  YOLO v3  attention mechanism  deep learning  
点击此处可从《西安电子科技大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西安电子科技大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号