首页 | 本学科首页   官方微博 | 高级检索  
     


Fuzzy reasoning based on the extension principle*
Authors:Yang Xu  Etienne E Kerre  Da Ruan  Zhenming Song
Affiliation:1. Department of Applied Mathematics, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China;2. Department of Applied Mathematics and Computer Science, University Gent, Gent, Belgium;3. Belgian Nuclear Research Centre (SCK.CEN), Boeretang 200, B-2400 Mol, Belgium
Abstract:According to the operation of decomposition (also known as representation theorem) (Negoita CV, Ralescu, DA. Kybernetes 1975;4:169–174) in fuzzy set theory, the whole fuzziness of an object can be characterized by a sequence of local crisp properties of that object. Hence, any fuzzy reasoning could also be implemented by using a similar idea, i.e., a sequence of precise reasoning. More precisely, we could translate a fuzzy relation “If A then B” of the Generalized Modus Ponens Rule (the most common and widely used interpretation of a fuzzy rule, A, B, are fuzzy sets in a universe of discourse X, and of discourse Y, respectively) into a corresponding precise relation between a subset of P(X) and a subset of P(Y), and then extend this corresponding precise relation to two kinds of transformations between all L-type fuzzy subsets of X and those of Y by using Zadeh's extension principle, where L denotes a complete lattice. In this way, we provide an alternative approach to the existing compositional rule of inference, which performs fuzzy reasoning based on the extension principle. The approach does not depend on the choice of fuzzy implication operator nor on the choice of a t-norm. The detailed reasoning methods, applied in particular to the Generalized Modus Ponens and the Generalized Modus Tollens, are established and their properties are further investigated in this paper. © 2001 John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号