Face recognition based on dictionary learning and subspace learning |
| |
Affiliation: | Department of Electronic Engineering, Fudan University, Shanghai 200433, China |
| |
Abstract: | Dictionary learning plays an important role in sparse representation based face recognition. Many dictionary learning algorithms have been successfully applied to face recognition. However, for corrupted data because of noise or face variations (e.g. occlusion and large pose variation), their performances decline due to the disparity between domains. In this paper, we propose a face recognition algorithm based on dictionary learning and subspace learning (DLSL). In DLSL, a new subspace learning algorithm (SL) is proposed by using sparse constraint, low-rank technology and our label relaxation model to reduce the disparity between domains. Meanwhile, we propose a high-performance dictionary learning algorithm (HPDL) by constructing the embedding term, non-local self-similarity term, and time complexity drop term. In the obtained subspace, we use HPDL to classify these mapped test samples. DLSL is compared with other 28 algorithms on FRGC, LFW, CVL, Yale B and AR face databases. Experimental results show that DLSL achieves better performance than those 28 algorithms, including many state-of-the-art algorithms, such as recurrent regression neural network (RRNN), multimodal deep face recognition (MDFR) and projective low-rank representation (PLR). |
| |
Keywords: | Face recognition Dictionary learning Subspace learning Label relaxation model |
本文献已被 ScienceDirect 等数据库收录! |
|