首页 | 本学科首页   官方微博 | 高级检索  
     

IWO缓冲层对MOCVD-ZnO:B薄膜性能的影响研究
引用本文:闫聪博,陈新亮,陈雪莲,孙建,张德坤,魏长春,张晓丹,赵颖,耿新华.IWO缓冲层对MOCVD-ZnO:B薄膜性能的影响研究[J].光电子.激光,2012(4):697-702.
作者姓名:闫聪博  陈新亮  陈雪莲  孙建  张德坤  魏长春  张晓丹  赵颖  耿新华
作者单位:南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所光电子薄膜器件与技术天津市重点实验室光电信息技术科学教育部重点实验室
基金项目:国家“973”重点基础研究(2011CBA00705,2011CBA00706,2011CBA00707);国家高技术研究发展计划(2009AA050602);科技部国际合作项目(2009DFA62580);天津市应用基础及前沿技术研究计划(09JCYBJC06900);中央高校基本科研业务费专项资金(65010341)资助项目
摘    要:金属有机化学气相沉积(MOCVD)技术生长的绒面ZnO透明导电(ZnO-TCO)薄膜应用于Si基薄膜太阳电池上能够形成"陷光结构",以提高薄膜太阳电池效率和稳定性。本文将电子束反应蒸发技术生长的掺W的In2O3(In2O3:W,(IWO)薄膜作为缓冲层,应用于MOCVD-ZnO:B薄膜与玻璃之间,可促进ZnO:B薄膜的生长,并且有效提升薄膜的光散射特性。当IWO缓冲层厚度为20nm时,获得的IWO/ZnO:B薄膜的电阻率为2.07×10-3Ω.cm,迁移率为20.9cm2.V-1.s-1,载流子浓度为1.44×1020 cm-3;同时,薄膜具有的透过率大于85%,且在550nm处绒度较ZnO:B薄膜提高了约9.5%,在800nm处绒度较ZnO:B薄膜提高了约4.5%。

关 键 词:MOCVD  ZnO:B薄膜  透明导电氧化物(TCO)  薄膜太阳电池  电子束蒸发  掺W的In2O3(In2O3:W  IWO)薄膜  绒度

Influence of IWO buffer layer on the properties of MOCVD-ZnO:B thin films
YAN Cong-bo,CHEN Xin-liang,CHEN Xue-lian,SUN Jian,ZHANG De-kun,WEI Chang-chun,ZHANG Xiao-dan,ZHAO Ying and GENG Xin-hua.Influence of IWO buffer layer on the properties of MOCVD-ZnO:B thin films[J].Journal of Optoelectronics·laser,2012(4):697-702.
Authors:YAN Cong-bo  CHEN Xin-liang  CHEN Xue-lian  SUN Jian  ZHANG De-kun  WEI Chang-chun  ZHANG Xiao-dan  ZHAO Ying and GENG Xin-hua
Affiliation:Key Laboratory of Photoelectronic Thin Film Devices and Technology of the City of Tianjin Key Laboratory of Optoelectronic Information Science and Technology for Ministry of Education,Institute of Photoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China;Key Laboratory of Photoelectronic Thin Film Devices and Technology of the City of Tianjin Key Laboratory of Optoelectronic Information Science and Technology for Ministry of Education,Institute of Photoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China;Key Laboratory of Photoelectronic Thin Film Devices and Technology of the City of Tianjin Key Laboratory of Optoelectronic Information Science and Technology for Ministry of Education,Institute of Photoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China;Key Laboratory of Photoelectronic Thin Film Devices and Technology of the City of Tianjin Key Laboratory of Optoelectronic Information Science and Technology for Ministry of Education,Institute of Photoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China;Key Laboratory of Photoelectronic Thin Film Devices and Technology of the City of Tianjin Key Laboratory of Optoelectronic Information Science and Technology for Ministry of Education,Institute of Photoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China;Key Laboratory of Photoelectronic Thin Film Devices and Technology of the City of Tianjin Key Laboratory of Optoelectronic Information Science and Technology for Ministry of Education,Institute of Photoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China;Key Laboratory of Photoelectronic Thin Film Devices and Technology of the City of Tianjin Key Laboratory of Optoelectronic Information Science and Technology for Ministry of Education,Institute of Photoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China;Key Laboratory of Photoelectronic Thin Film Devices and Technology of the City of Tianjin Key Laboratory of Optoelectronic Information Science and Technology for Ministry of Education,Institute of Photoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China;Key Laboratory of Photoelectronic Thin Film Devices and Technology of the City of Tianjin Key Laboratory of Optoelectronic Information Science and Technology for Ministry of Education,Institute of Photoelectronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China
Abstract:Light trapping effect is formed when the textured ZnO:B-TCO thin films deposited by MOCVD technique are used in Si-based thin film solar cells,which is important for improving the short-circuit current and the stability of thin film solar cells.In this paper,In2O3:W(IWO) thin films deposited by electron beam evaporation were grown between the glass substrates and ZnO:B thin films as buffer layers,which can promote the growth of ZnO:B thin films.And the scattering characteristics of ZnO:B thin films are improved effectively.When the thickness of IWO thin film is 20 nm,bi-layer IWO/ZnO:B thin films with the resistivity of 2.07×10-3 Ω·cm,mobility of ~20.9 cm2·V-1·s-1 and carrier concentration of 1.44×1020 cm-3 are obtained.Meanwhile,these bi-layer thin films present high transparencies over 85%,and the haze of these thin films increases by about 9.5% at 500 nm wavelength and about 4.5% at 800 nm wavelength.
Keywords:MOCVD  ZnO:B thin films  transparent conductive oxide(TCO)  thin film solar cell  electron beam evaporation  In2O3:W(IWO) thin film  haze
本文献已被 CNKI 等数据库收录!
点击此处可从《光电子.激光》浏览原始摘要信息
点击此处可从《光电子.激光》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号