首页 | 本学科首页   官方微博 | 高级检索  
     


High-velocity oxyfuel thermal spray coatings for biomedical applications
Authors:J. D. Haman  A. A. Boulware  L. C. Lucas  D. E. Crawmer
Affiliation:(1) Department of Biomedical Engineering, University of Alabama at Birmingham, 35294 Birmingham, AL, USA;(2) Miller Thermal, Inc., 54912 Appleton, WI, USA
Abstract:Plasma spraying is used to produce most commercially available bioceramic coatings for dental implants; however, these coatings still contain some inadequacies. Two types of coatings produced by the high- velocity oxyfuel (HVOF) combustion spray process using commercially available hydroxyapatite (HA) and fluorapatite (FA) powders sprayed onto titanium were characterized to determine whether this relatively new coating process can be applied to bioceramic coatings. Diffuse reflectance Fourier transform infrared (FTIR) spectroscopy, x- ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the composition, microstructure, and morphology of the coatings. The XRD and FTIR techniques revealed an apatitic structure for both HA and FA coatings. However, XRD patterns indicated some loss in crystallinity of the coatings due to the spraying process. Results from FTIR showed a loss in the intensity of the OH and F groups due to HVOF spraying; the phosphate groups, however, were still present. Analysis by SEM showed a coating morphology similar to that obtained with plasma spraying, with complete coverage of the titanium substrate. Interfacial SEM studies revealed an excellent coating-to-substrate apposition. These results indicate that with further optimization the HVOF thermal spray process may offer another method for producing bioceramic coatings.
Keywords:biomedical coatings  Fourier transform infrared spectroscopy  HVOF  hydroxyapatite  phase structure
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号