首页 | 本学科首页   官方微博 | 高级检索  
     


Covalent anchoring of Mo(VI) Schiff base complex into SBA-15 as a novel heterogeneous catalyst for enhanced alkene epoxidation
Authors:Jian Zhang  Pingping Jiang  Yirui Shen  Weijie Zhang  Gang Bian
Affiliation:1.The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering,Jiangnan University,Wuxi,People’s Republic of China;2.School of Chemistry and Environmental Science,Lanzhou City University,Lanzhou,People’s Republic of China
Abstract:Molybdenum(VI) Schiff base complexes modified mesoporous SBA-15 hybrid heterogeneous catalysts were synthesized by the reaction of MoO2(acac)2 with mesoporous SBA-15 functionalized by grafting procedures of 3-aminopropyl-triethoxysilane and salicylaldehyde, respectively. The physico-chemical properties of the as-synthesized catalysts were analyzed by ICP-AES, XRD, N2 adsorption–desorption, FT-IR, SEM, TEM and EDX. The as-synthesized catalysts were effective in the catalytic epoxidation of cyclohexene. The catalytic activity can be further enhanced by silylation of the residual Si–OH groups using Me3SiCl, which was largely due to the higher content of Mo active sites. The conversion and selectivity reached to 97.78 and 93.99 % using tert-butyl hydroperoxide as oxidant for Mo–CH3–SA–NH2–SBA-15, while 81.97 and 89.41 % in conversion and selectivity for Mo–SA–NH2–SBA-15. At the same time, the catalytic performances of the hybrid materials were further systematically investigated under various reaction conditions (solvent, oxidants and alkenes, etc.). Mo–CH3–SA–NH2–SBA-15 catalyst can be recycled effectively and reused four cycles with little loss in activity. In addition, the results from hot filtration demonstrated that the catalytic activity mostly resulted from the heterogeneous catalytic process.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号