首页 | 本学科首页   官方微博 | 高级检索  
     


Improved particle concentration by cascade AC electroosmotic flow
Authors:Masahiro Motosuke  Keichi Yamasaki  Akihiko Ishida  Hikaru Toki  Shinji Honami
Affiliation:1. Department of Mechanical Engineering, Tokyo University of Science, 1-14-6 Kudankita, Chiyoda-ku, Tokyo, 102-0073, Japan
Abstract:The importance of electrokinetics in microfluidic technology has been growing owing to its versatility and simplicity in fabrication, implementation, and handling. Alternating-current electroosmosis (ACEO), which is the motion of fluid due to the ion movement by an interaction between AC electric field and an electrical double layer on the electrode surface, has a potential for a particle concentration method to detecti rare samples flowing in a microchannel. This study investigates an improved ACEO-based particle concentration by cascade electrokinetic approach. Flow field induced by ACEO and accumulation behavior of particles were parametrically measured to discuss the concentrating mechanism. The accumulation of particles by ACEO can be explained by a balance between the attenuating electroosmotic flow to transport particles and the inherent diffusive motion of the particles, which is hindered due to the near-wall location. Although a parallel double-gap electrode geometry enables particles to be collected at the center of electrode very sharply, it has scattering zones with accumulated particles at sidewalls of the channel. This drawback can be overcome by applying sheath flow or introducing cascade electrode pattern upstream of the focusing zone. As a result, total concentration efficiency was 98.4 % for all the particles flowing in the cascade device. The resultant concentrated particles exist on the electrode surface within 5 μm, and three-dimensional concentration of particle with the concentration factor as large as 700 is possible using a monolithic channel, co-planar electrode, and sheathless solution feeding. This cascade electrokinetic method provides a new and effective preconcentrator for ultra-sensitive detection of rare samples.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号