首页 | 本学科首页   官方微博 | 高级检索  
     


The use of generalised deformation boundaries for the analysis of axisymmetric extrusion through curved dies
Authors:DY Yang  CH Han  BC Lee
Affiliation:Department of Production Engineering, Korea Advanced Institute of Science and Technology, Seoul, Korea
Abstract:A generalised kinematically admissible velocity field is derived for axisymmetric extrusion through curved dies by employing rigid-plastic boundaries expressed in terms of arbitrarily chosen continuous functions. The corresponding upper-bound extrusion pressure is related directly to boundary functions for the plastically deforming region when the die shape, lubrication condition and material characteristics of the billet are given. The proposed method of analysis makes it possible to predict the deformation pattern as well as extrusion pressure. In computation a third-order polynomial is chosen for the die boundary and the bounding function for the plastic region is chosen to be a fourth-order polynomial. The workhardening effect is considered in the formulation. The plastic boundaries as well as stream lines are affected by various process parameters. The theory predicts the relatively faster axial flow at the center than near the die boundary for greater friction factor even with the same die shape. The effects of area reduction and die length are also discussed in relation to extrusion pressure and deformation. Experiments are carried out for steel billets at room temperature. Deformation patterns are measured for several area reductions by the photoetching technique and the extrusion pressure is measured using a load-cell. The predicted extrusion pressure is in excellent agreement with the value computed by the finite element method. The deformation patterns agree well with the experimental observation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号