首页 | 本学科首页   官方微博 | 高级检索  
     


Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area
Authors:Yuanbo Liu  Tetsuya Hiyama
Affiliation:a Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
b Hydrospheric Atmospheric Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
Abstract:Land surface temperature (LST) is a key parameter in numerous environmental studies. Surface heterogeneity induces uncertainty in pixel-wise LST. Spatial scaling may account for the uncertainty, however, different approaches lead to differences in scaled values. Satellite-retrieved LST may be representative of the pixel-wise LST and useful for scaling analysis, but the limited accuracy of retrieved values adds uncertainty into the scaled values. Based on the Stefan-Boltzmann (S-B) law, this study proposed scaling approaches for LST over flat and relief areas to explore the combined uncertainties in scaling using satellite-retrieved data. To take advantage of simultaneous, multi-resolution observations at coincident nadirs by the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) and the MODerate-resolution Imaging Spectroradiometer (MODIS), LST products from these two sensors were examined for part of the Loess Plateau in China. 90-m ASTER LST data were scaled up to 1 km using the proposed approaches, and variation in the LST was generally reduced after scaling. Amongst the sources of uncertainties, surface heterogeneity (emissivity) and different scaling approaches resulted in very minor differences, with a maximum difference of 0.2 K for the upscaled LST. Terrain features, taken as an areal weighting factor, had negligible effects on the upscaled value. Limited accuracy of the retrieved LST was the major uncertainty. The overall LST increased 0.6 K on average with correction for terrain-induced angular effect and 0.4 K for both angular and adjacency effects over the study area. Accounting for terrain correction in scaling is necessary for rugged areas. With terrain correction, the upscaled ASTER LST achieved an agreement of − 0.1 ± 1.87 K and a root mean square error (RMSE) of 1.87 K overall with the 1-km MODIS LST rectified by Wan et al.'s approach Wan, Z., Zhang, Y., Zhang Q., Li, Z.-L. (2002b), Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment, 83, 163-180]. Refining the rectification approach resulted in a better agreement of − 0.2 ± 1.57 K and a RMSE of 1.58 K.
Keywords:Scaling  Land surface temperature  Heterogeneity  Emissivity  Terrain correction  Remote sensing  ASTER  MODIS
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号