首页 | 本学科首页   官方微博 | 高级检索  
     


Retrieval of oceanic chlorophyll concentration with relevance vector machines
Authors:Gustavo Camps-Valls  Luis Gómez-Chova  Jordi Muñoz-Marí  Joan Vila-Francés  Julia Amorós-López  Javier Calpe-Maravilla
Affiliation:Grup de Processament Digital de Senyals, Dept. Enginyeria Electrònica, Universitat de València, Spain
Abstract:In this communication, we evaluate the performance of the relevance vector machine (RVM) for the estimation of biophysical parameters from remote sensing data. For illustration purposes, we focus on the estimation of chlorophyll-a concentrations from remote sensing reflectance just above the ocean surface. A variety of bio-optical algorithms have been developed to relate measurements of ocean radiance to in situ concentrations of phytoplankton pigments, and ultimately most of these algorithms demonstrate the potential of quantifying chlorophyll-a concentrations accurately from multispectral satellite ocean color data. Both satellite-derived data and in situ measurements are subject to high levels of uncertainty. In this context, robust and stable non-linear regression methods that provide inverse models are desirable.Lately, the use of the support vector regression (SVR) has produced good results in inversion problems, improving state-of-the-art neural networks. However, the SVR has some deficiencies, which could be theoretically alleviated by the RVM. In this paper, performance of the RVM is evaluated in terms of accuracy and bias of the estimations, sparseness of the solutions, robustness to low number of training samples, and computational burden. In addition, some theoretical issues are discussed, such as the sensitivity to training parameters setting, kernel selection, and confidence intervals on the predictions.Results suggest that RVMs offer an excellent trade-off between accuracy and sparsity of the solution, and become less sensitive to the selection of the free parameters. A novel formulation of the RVM that incorporates prior knowledge of the problem is presented and successfully tested, providing better results than standard RVM formulations, SVRs, neural networks, and classical bio-optical models for SeaWIFS, such as Morel, CalCOFI and OC2/OC4 models.
Keywords:Biophysical parameter  Concentration prediction  Kernel  Relevance vector machine  Support vector machine  Sparsity  Multispectral  Oceanic chlorophyll
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号