首页 | 本学科首页   官方微博 | 高级检索  
     


Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought
Authors:Iolanda Filella,Josep Peñ  uelas,Laura Llorens,Marc Estiarte
Affiliation:Unitat d'Ecofisiologia CSIC-CEAB-CREAF, CREAF (Center for Ecological Research and Forestry Applications), Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Spain
Abstract:We aimed to evaluate how the remote sensing vegetation indices NDVI and PRI responded to seasonal and annual changes in an early successional stage Mediterranean coastal shrubland canopy that was submitted to experimental warming and drought simulating predicted climate change for the next decades. These conditions were obtained by using a new non-intrusive methodological approach that increases the temperature and prolongs the drought period by using roofs that automatically cover the vegetation after the sunset or when it rains. On average, warming increased air temperature by 0.7 °C and soil temperature by 1.6 °C, and the drought treatment reduced soil moisture by 22%. We measured spectral reflectance at the canopy level and at the individual plant level seasonally during 4 years. Shrubland NDVI tracked the community development and activity. In control and warming treatments, NDVI increased with the years while it did not change in the drought treatment. There was a good relationship between NDVI and both community and individual plant biomass. NDVI also decreased in summer seasons when some species dry or decolour. The NDVI of E. multiflora plant individuals was lower in autumn and winter than in the other seasons, likely because of flowering. Shrubland PRI decreased only in winter, similarly to the PRI of the most dominant species, G. alypum. At this community scale, NDVI was better related than PRI to photosynthetic activity, probably because photosynthetic fluxes followed canopy seasonal greening in this complex canopy, which includes brevideciduous, annual and evergreen species and variable morphologies and canopy coverage. PRI followed the seasonal variations in photosynthetic rates in E. multiflora and detected the decreased photosynthetic rates of drought treatment. However, PRI did not track the photosynthetic rates of G. alypum plants which have lower LAIs than E. multiflora. In this community, which is in its early successional stages, NDVI was able to track biomass, and indirectly, CO2 uptake changes, likely because LAI values did not saturate NDVI. Thus, NDVI appears as a valid tool for remote tracking of this community development. PRI was less adequate for photosynthetic assessment of this community especially for its lower LAI canopies. PRI usefulness was also species-dependent and could also be affected by flowering. These results will help to improve the interpretation of remote sensing information on the structure and physiological status of these Mediterranean shrublands, and to gain better insight on ecological and environmental controls on their ecosystem carbon dioxide exchange. They also show the possibility of assessing the impacts of climate change on shrubland communities.
Keywords:NDVI   PRI   Globularia alypum   Erica multiflora   Flowering   Climate change
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号