利用KSN算法发现网络中有影响力的结点 |
| |
作者姓名: | 田艳 刘祖根 |
| |
作者单位: | 云南财经大学信息学院 昆明650221,云南财经大学信息学院 昆明650221 |
| |
基金项目: | 本文受云南省社科规划项目(YB2012080),云南省自然科学基金项目(2011FZ148),云南财经大学研究生创新基金项目(云财研创(2014)24),云南财经大学校级项目(YC2012D11),云南财经大学研究生创新基金项目(2015YUFEYC004)资助 |
| |
摘 要: | 准确高效地发现网络中有影响力的传播者具有非常重要的理论和现实意义。近年来,结点影响力排序受到了多领域学者的广泛关注。K-shell是一种较好的结点影响力评价指标;然而,仅仅依赖结点自身K-shell值实现的算法通常具有评估结果精确度不高、适用性较差等缺陷。针对此问题,提出KSN(the K-shell and neighborhood centrality)中心性模型,该算法综合考虑了结点本身及其所有二阶以内邻居结点的K-shell值。实验结果表明,所提出算法 度量结点传播的能力 比度中心性、介数中心性、K-shell分解、混合度分解等方法更准确。
|
关 键 词: | 复杂网络 有影响力结点 中心化测量 KSN中心性 |
|
|