首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊聚类水平集的医学图像分割方法
作者姓名:吴杰  朱家明  陈静
作者单位:扬州大学信息工程学院 扬州225127,扬州大学信息工程学院 扬州225127,扬州大学信息工程学院 扬州225127
基金项目:本文受国家自然科学基金资助
摘    要:医学图像分割是图像分割的一个重要应用领域,医学图像普遍存在高噪声、伪影、低对比度、灰度不均匀、不同软组织之间与病灶之间边界模糊等特点,因此运用聚类算法,结合李春明模型(LCM)和两相水平集分割方法(CV),首先选用合适的滤波器对医学图像进行去噪,然后使用模糊C均值算法(FCM)获得图像的先验模型;并对传统的CV模型进行改进,对图像进行细分割。实验表明,该模型可以解决图像高噪声、弱边界问题,并可以有效避免重新初始化,对边缘更加敏感,可提高分割精度,有效的抑制噪声,明显的减少迭代次数和时间,具有一定应用价值。。

关 键 词:模糊C均值聚类  滤波器  LCM模型  FCM-LCMCV水平集方法
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号