首页 | 本学科首页   官方微博 | 高级检索  
     

基于地震多属性的孔隙度预测——以川东A气田为例
引用本文:张新亮,何丽箐,吴俊. 基于地震多属性的孔隙度预测——以川东A气田为例[J]. 新疆石油地质, 2011, 32(4)
作者姓名:张新亮  何丽箐  吴俊
作者单位:1. 中国地质大学能源学院,北京,100083
2. 中国石油冀东油田分公司勘探开发研究院,河北唐山,063004
摘    要:利用基于地震多属性的孔隙度预测方法,可综合权衡各属性参数,更客观、有效地反映孔隙度的变化。建立测井孔隙度同地震属性联系,运用多元回归、误差分析、交叉验证等技术来确定最优的属性类型及数量;结合人工神经网络方法建立这些属性与测井孔隙度之间的映射关系,预测孔隙度在平面、垂向上的分布特征。首次将地震多属性孔隙度预测方法运用于川东A气田超致密砂岩储集层孔隙度的预测研究,取得了良好的效果。

关 键 词:孔隙度  预测  地震多属性  神经网络  多元回归  交叉验证

Application of Porosity Prediction Based on Seismic Multiattributes to Eastern Sichuan A Gas Field
ZHANG Xin-liang,HE Li-qing,WU Jun. Application of Porosity Prediction Based on Seismic Multiattributes to Eastern Sichuan A Gas Field[J]. Xinjiang Petroleum Geology, 2011, 32(4)
Authors:ZHANG Xin-liang  HE Li-qing  WU Jun
Affiliation:ZHANG Xin-liang1,HE Li-qing2,WU Jun1(1.Institute of Energy Resources,China University of Geosciences,Beijing 100083,China,2.Research Institute of Exploration and Development,Jidong Oilfield Company,PetroChina,Tangshan,Hebei 063004,China)
Abstract:Using porosity prediction method based on seismic multiattributes can comprehensively balance individual attribute parameters so that more objectively and effectively reflect the variation of porosity,develop the relationship between the well log porosity and the seismic attribute and determine the optimal type and amount of attribute by means of multielement regression,error analysis and cross-validation techniques,and finally establish the mapping relations between the attributes and well log porosity and...
Keywords:porosity  prediction  multiattribute  neural network  multielement regression  cross validation  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号